翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

food energy : ウィキペディア英語版
food energy
Food energy is potential energy that animals (including humans) derive from their food through the process of cellular respiration. (Cellular respiration involves either the process of joining oxygen with the molecules of food (aerobic respiration) or the process of reorganizing the atoms within the molecules (anaerobic respiration).)
Humans and other animals need a minimum intake of food energy to sustain their metabolism and to drive their muscles. Foods are composed chiefly of carbohydrates, fats, proteins, water, vitamins, and minerals. Carbohydrates, fats, proteins, and water represent virtually all the weight of food, with vitamins and minerals making up only a small percentage of the weight. (Carbohydrates, fats, and proteins comprise ninety percent of the dry weight of foods.〔(【引用サイトリンク】title=Carbohydrates, Proteins, Nutrition )〕) Organisms derive food energy from carbohydrates, fats and proteins as well as from organic acids, polyols, and ethanol present in the diet.〔Ross, K. A. (2000c) Energy and fuel, in Littledyke M., Ross K. A. and Lakin E. (eds), Science Knowledge and the Environment. London: David Fulton Publishers.〕 Some diet components that provide little or no food energy, such as water, minerals, vitamins, cholesterol, and fibre, may still be necessary to health and survival for other reasons. Water, minerals, vitamins, and cholesterol are not broken down (they are used by the body in the form in which they are absorbed) and so cannot be used for energy. Fiber, a type of carbohydrate, cannot be completely digested by the human body. Ruminants can extract food energy from the respiration of cellulose because of bacteria in their rumens.
Using the International System of Units, researchers measure energy in joules (J) or in its multiples; the kilojoule (kJ) is most often used for food-related quantities. An older metric system unit of energy, still widely used in food-related contexts, is the calorie; more precisely, the "food calorie", "large calorie" or kilocalorie (kcal or Cal), equal to 4.184 kilojoules. (Contrast the "small calorie" (cal), equal to 1/1000 of a food calorie, that is often used in chemistry and in physics.) Within the European Union, both the kilocalorie ("kcal") and kilojoule ("kJ") appear on nutrition labels. In many countries, only one of the units is displayed; in the US and Canada labels spell out the unit as "calorie" or as "Calorie".
Fats and ethanol have the greatest amount of food energy per mass, 37 and 29 kJ/g (8.8 and 6.9 kcal/g), respectively. Proteins and most carbohydrates have about . The differing energy density of foods (fat, alcohols, carbohydrates and proteins) lies mainly in their varying proportions of carbon, hydrogen, and oxygen atoms. Carbohydrates that are not easily absorbed, such as fiber, or lactose in lactose-intolerant individuals, contribute less food energy. Polyols (including sugar alcohols) and organic acids contribute and respectively.〔 The amount of water, fat, and fiber in foods determines those foods' energy density.
Theoretically, one could measure food energy in different ways, using (say) the Gibbs free energy of combustion, or the amount of ATP generated by metabolizing the food. However, the convention is to use the heat of the oxidation reaction, with the water substance produced being in the liquid phase. Conventional food energy is based on heats of combustion in a bomb calorimeter and corrections that take into consideration the efficiency of digestion and absorption and the production of urea and other substances in the urine. The American chemist Wilbur Atwater worked these out in the late 19th century.〔("Why food labels are wrong" ) by Bijal Trivedi, ''New Scientist'', 18 July 2009, pp. 30-3.〕 (See Atwater system for more detail.)
Each food item has a specific metabolizable energy intake (MEI). This value can be approximated by multiplying the total amount of energy associated with a food item by 85%, which is the typical amount of energy actually obtained by a human after respiration has been completed. In animal nutrition, where energy is a critical element of the economics of meat production, researchers may determine a specific metabolizable energy for each component (protein, fat, etc.) of each ingredient of the feed.
== Nutrition labels ==

Many governments require food manufacturers to label the energy content of their products, to help consumers control their energy intake.〔(European Union regulations on nutrition labeling )〕 In the European Union, manufacturers of packaged food must label the nutritional energy of their products in both kilocalories and kilojoules, when required. In the United States, the equivalent mandatory labels display only "Calories",〔United States federal food-labeling regulations (21CFR101.9 )〕 often as a substitute for the name of the quantity being measured, food energy; an additional kilojoules figure is optional and is rarely used. The energy available from the respiration of food is usually given on labels for 100 g, for a typical serving size (according to the manufacturer), and/or for the entire pack contents.
The amount of food energy associated with a particular food could be measured by completely burning the dried food in a bomb calorimeter, a method known as direct calorimetry.〔(Calories: Overview of Nutrition: Merck Manual Home Edition )〕 However, the values given on food labels are not determined in this way. The reason for this is that direct calorimetry also burns the dietary fiber, and so does not allow for fecal losses; thus direct calorimetry would give systematic overestimates of the amount of fuel that actually enters the blood through digestion. What are used instead are standardized chemical tests or an analysis of the recipe using reference tables for common ingredients to estimate the product's digestible constituents (protein, carbohydrate, fat, etc.). These results are then converted into an equivalent energy value based on the following standardized table of energy densities.〔United Kingdom (The Food Labelling Regulations 1996 ) – (Schedule 7: Nutrition labelling )〕〔(Council directive 90/496/EEC of 24 September 1990 on nutrition labelling for foodstuffs )〕 However "energy density" is a misleading term for it once again assumes that energy is IN the particular food, whereas it simply means that "high density" food needs more oxygen during respiration, leading to greater transfer of energy.〔See for example the Energy section (follow "Fuels") in Science Issues http://scienceissues.org.uk〕
Note that the following standardized table of energy densities〔 is an approximation and the value in kJ/g does not convert exactly to kcal/g using a conversion factor.
All the other nutrients in food are noncaloric and are thus not counted.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「food energy」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.